
1

Chapter 74
ELECTRONIC ATTACKS

Thomas M. Chen, Southern Methodist University
Matthew C. Elder, Symantec Corporation

Jimi Thompson, Southern Methodist University

OUTLINE:

1. Introduction
1.1. Types of Attackers
1.2. Attacker Goals and Motivations
1.3. Attack Targets
1.4. Attack Phases

2. Reconnaissance Phase
2.1. Footprinting
2.2. Scanning
2.3. Vulnerability Scanning

3. Attack Phase
3.1. Sniffing
3.2. Session Hijacking
3.3. Password Attacks
3.4. Exploits
3.5. Social Engineering
3.5. Trojan Horses
3.6. Adware and Spyware
3.7. Viruses and Worms
3.8. Spam
3.9. Denial of Service

4. Detection Avoidance Phase
4.1. Evading Intrusion Detection Systems
4.2. Covering Up
4.3. Rootkits
4.4. Covert Channels

5. Conclusions

KEY WORDS: attacks, reconnaissance, footprinting, scanning, vulnerability, exploit, password,
social engineering, buffer overflow, Trojan horse, virus, worm, denial of service, spam, rootkit

ABSTRACT
An understanding of electronic attacks is an essential prerequisite to building strong cyber
defenses. This chapter gives an overview of the major electronic attacks encountered today,
proceeding through the basic steps of reconnaissance, attack, and covering up. Methods and tools
commonly used at each step are highlighted. The possible types of attacks are virtually countless,

2

ranging from eavesdropping and invasion of privacy to compromise of systems for remote
control. Moreover, attacks are not necessarily directed at compromising specific targets. Large-
scale attacks such as viruses, worms, and spam, are indiscriminant in targeting as many systems
as possible. Rather than a comprehensive catalog, this chapter is intended to serve as a quick tour
towards later chapters which cover specific attacks in more detail as well as electronic defenses.

INTRODUCTION

In today’s society, computer systems are valuable, and often invaluable, for innumerable
business and personal uses. Computer systems and networks are also very tempting as targets,
shown by statistics that track the frequency and prevalence of cybercrimes. For example,
Symantec Corporation estimates that organizations were hit by an average of 11 attacks daily
during the first half of 2004 (Turner, 2004).

Part of the temptation is the ease of electronic attacks. Although not every attack takes
advantage of vulnerabilities, it is widely known that computer systems have numerous
vulnerabilities. In early 2004, about 48 new vulnerabilities were discovered weekly on average
(Turner, 2004). Moreover, 96 percent of them were serious enough to be rated as moderately or
highly severe. Attackers are keenly aware of new vulnerabilities because it takes time for
organizations to set up adequate protection, e.g., software patching. In early 2004, exploits for
new vulnerabilities appeared on average only 5.8 days after announcement of the vulnerability.

Electronic attacks have also become easier since virtually all computers are
interconnected by the Internet or private networks. Moreover, mobile and handheld devices with
Internet connectivity have steadily grown in popularity. This extensive network environment
facilitates remote attacks and makes attacks more difficult to track to their sources. The growing
number of networked machines also means more targets to attract attacks.

This chapter gives an overview of electronic attacks, highlighting the basic steps involved
in attacks seeking to compromise computer systems. Most of the emphasis here is on network-
enabled attacks, but this is not meant to imply that all electronic attacks are carried out through
the network. This chapter also describes large-scale attacks such as viruses, worms, denial of
service, and spam.

Types of Attackers
Attackers can be categorized in a number of different ways. One distinction often made is

the relationship of the attacker to the target, either internal or external. Insider attacks from
within an organization are believed to be the most common and most critical in past years. A
commonly cited statistic in the late 1990’s attributed 70 percent of all attacks to insiders. Insiders
have certain advantages that can increase the likelihood of a successful attack, such as the trust
of an organization and knowledge regarding systems and their defenses. However, with
ubiquitous network connectivity today, external attacks are more likely than ever before (CERT,
2004).

Attackers can also be categorized as either amateurs or professionals. Many people
probably visualize an attacker as the stereotypical male teenage “hacker” or “script kiddie” with
too much free time. This stereotype has been perpetuated by fictional characters in films such as
War Games as well as real-life arrested hackers. For example, the most recent case was the arrest
of 18-year-old Sven Jaschan in May 2004. He is being prosecuted for writing the four most

3

damaging worms of 2004, including the Netsky and Sasser worms, which accounted for 70
percent of the worms received in the world in the first half of 2004 (Sophos, 2004).

While teenage vandals are undoubtedly responsible for a substantial fraction of electronic
attacks, it appears from recent trends that cybercrimes are being increasingly carried out by
professionals and organized crime. Professional crimes tend to be more sophisticated and larger
scale than amateur crimes. Attacks designed for identity theft and profit are becoming more
prevalent. There are growing number of channels used for buying and selling lists of
compromised computers and stolen identity data. Other professionals known to be involved in
electronic attacks include national governments, military agencies, and industrial spies.

Attacker Goals and Motivations
The motivations for electronic attacks depend on the attacker. Because there are many

different types of attackers, motivations can be almost anything, ranging from fun and fame to
extortion, profit, espionage, revenge, or a political agenda.

The stereotypical teenage hacker is believed to be usually interested in gaining fame or
notoriety. For example, according to some media accounts, Sven Jaschan appeared primarily
motivated by curiosity and perhaps good intentions, writing Netsky.A to combat two other
worms, MyDoom and Bagle.

On the other hand, messages encoded in the Bagle worm suggested that its authors were
professionals motivated by profit. This is supported by the worm’s actions including installation
of backdoors for remote access (Symantec, 2004).

An increasingly common goal is invasion of privacy or theft of confidential data. This is
evident from the escalation of spyware and phishing attacks (described later in this chapter).

Attack Targets
An electronic attack will have specific targets depending on the attacker’s goals. The

target could be particular information on a single machine, or the target could be as broad as the
entire network infrastructure.

A recent survey showed that 70 percent of organizations were hit by some type of
electronic attack (CERT, 2004). E-commerce was the most frequently targeted sector, as many
attackers now are motivated by financial gain (Turner, 2004).

Attack Phases
An electronic attack is commonly carried out through a progression of steps, analogous to

the steps of a physical attack (Chirillo, 2002; McClure, Scambray, and Kutz, 2001; Skoudis,
2002). The first step is reconnaissance to collect the necessary intelligence in preparation of the
actual attack. The second step is the actual attack, which could have many different goals.
During and after the attack, the attacker may try to take actions to avoid detection.

RECONNAISSANCE PHASE

If an attacker wants to compromise a specific computer system, it would obviously be
wise to prepare for an attack by first discovering everything possible about the target. The
reconnaissance phase can reveal a variety of information – account names, addresses, operating
systems, perhaps even passwords – that could increase the success of an attack. Moreover, most

4

reconnaissance techniques are not viewed as malicious or illegal, and may be carried out without
a high risk of alarming a potential target.

As one might imagine, many different reconnaissance techniques are possible, and
attackers do not follow a unique sequence of steps. Here we outline three general steps to
progressively discover more information about a potential target.

Footprinting
The initial step in discovery is called footprinting, fingerprinting, or enumeration. An

abundance of information is readily available on the Web. These databases can be interrogated
by a number of utilities such as nslookup or dig.

The whois databases contain information about the assignment of Internet addresses,
registration of domain names, and individual contacts. Domain names such as
www.mycompany.com are registered through the Internet Network Information Center
(InterNIC), a consortium of several companies and the U.S. government. For a domain name, the
InterNIC whois database can provide the registrant’s name and address, domain servers, and
contact information.

For information about ownership of ranges of IP addresses, the American Registry for
Internet Numbers (ARIN) database provides a mechanism for finding contact and registration
information for resources including IP addresses, autonomous system numbers, and registered
organizations in the Americas. European IP address assignments can be discovered from
Réseaux IP Euoropéens Network Coordination Centre (RIPE NCC). Likewise, Asian IP address
assignments are maintained by the Asia Pacific Network Information Center (APNIC).

Another useful database is the Domain Name System (DNS). DNS is a hierarchy of
servers used to associate domain names, IP addresses, and mail servers. The hierarchy extends
from the root DNS servers down to DNS servers for individual organizations and networks.
These DNS servers contain information about other low-level DNS servers and IP addresses of
individual hosts.

Scanning
Armed with information gained from footprinting, an attacker may know names and

addresses for potential targets, and perhaps specific host system information. Footprinting is
similar to looking up names and numbers in a telephone book. Scanning is a more active step to
learn about potential targets from their responses. There are many different ways to conduct
scans.

War Dialing The most primitive though still useful type of scanning is war dialing. War
dialers are simply automated machines for dialing a set of phone lines to find accessible
modems. A telephone number within an organization is usually easy to find through the Internet
or telephone books, then an attacker could dial a surrounding range of numbers. The results will
reveal phone lines with modems. War dialers can include a nudging function that sends a
predefined string of characters to a modem to see how it responds. The response may reveal the
lack of a password, the type of platform, and perhaps a remote access program (e.g., the popular
pcAnywhere).

Although war dialers have been in use for decades, they can still be effective in attacks
when a modem is not properly secured. Obviously, modems without password protection are
completely vulnerable. In addition, modems can be attacked by guessing the password (see the
section below on password attacks). A successful attack through an unsecure modem can lead to

5

compromise of an entire organization’s network, effectively bypassing firewalls and other
sophisticated defenses.

Ping Sweeps Internet Control Message Protocol (ICMP) is part of the Internet Protocol to
enable notification of troubles and other control functions. Ping consisting of a pair of ICMP
messages called Echo Request and Echo Reply are designed to verify that a specific host is
operational. An IP-addressable host should reply to an ICMP Echo Request with an ICMP Echo
Reply.

Ping is frequently used by attackers to scan a block of IP addresses for live hosts. Any
number of tools can easily perform a ping sweep. However, since ping sweeps can be noticed,
organizations will sometimes block ICMP messages. TCP packets to well known ports will also
work, prompting a TCP SYN-ACK reply.

Network Mapping Traceroute is a widely used utility for mapping a network topology. It
cleverly takes advantage of the time-to-live (TTL) field in the IP packet header. The TTL field is
set to the maximum time allowed for delivery of an IP packet. Each router decrements the TTL
field by the time spent by the packet in that router, but routers typically forward packets quickly
and are then forced to decrement the TTL by the minimum unit of one. Thus, the TTL field
essentially serves as a hop count, where each router decrements the TTL field by one. If the TTL
field reaches a value of zero, a router should discard the packet and send an ICMP Time
Exceeded message back to the source IP address in the discarded packet.

Traceroute sends out a series of UDP packets, starting with a TTL field value of one and
incrementing the value by one for each successive packet. When ICMP Time Exceeded
messages are returned, they reveal the addresses of routers at various distances. An example of
traceroute is shown in Figure 74-1. Similarly, ICMP messages could be used instead of UDP
packets.

Figure 74-1. Example of traceroute output.

Port Scanning TCP and UDP packets are sent to and received at specific ports indicated
in the TCP and UDP headers. The headers allow a range of 65,535 TCP and 65,535 UDP ports.
Certain “well known” port numbers are pre-assigned to common protocols. For example, Web

6

servers listen for HTTP requests on TCP port 80. The other ports may be used dynamically as
needed.

An attacker is very often interested to discover which ports are open on a potential target,
i.e., which services are listening. However, probing every possible port manually would be very
tedious. A port scanner is an automated tool for sending probes to a set of specific ports to see
which ports are open. An example of a port scan is shown in Figure 74-2.

Figure 74-2. Example of a port scan.

Operating System Detection Knowledge of a host’s operating system and its version is
valuable to attackers because specific vulnerabilities are known for different operating systems.
One technique used by attackers is TCP stack fingerprinting, implemented in the popular Nmap
tool. While the TCP protocol is standardized in terms of its three-way connection establishment
handshake, the standards do not cover responses to various illegal combinations of TCP flags.
Operating systems can differ in their implementations of responses to illegal TCP packets. The
idea of TCP stack fingerprinting is to probe for these differences with various illegal TCP
packets until the operating system, even its particular version, can be identified (Fyodor, 2002).

Scanning Tools Plenty of free and commercial scanning tools are available. Many of
these are used for legitimate purposes by system administrators.

Sam Spade is a combination of useful reconnaissance tools, wrapped behind a Windows
graphical user interface, including ping, whois, IP block whois (ARIN database query),
nslookup, traceroute, and a function to verify email addresses on a specific mail server. A
version of Sam Spade is available as a Web-based tool. Many other Web-based scanning tools

7

can be found easily, such as a Web portal run by Mixter that includes ping, traceroute, whois,
and port scans.

Other examples of free toolkits include CyberKit and Cheops. Cheops is a popular, easy-
to-use tool for network mapping that automatically draws out a network topology based on
discovered hosts and distances; it also discovers active services through port scanning and
identifies operating systems by TCP stack fingerprinting.

An example of a commercial tool, NetScanTools Pro includes ping, port scans,
traceroute, netscanner (ping sweep), custom ICMP packet generation, whois, nslookup, IP packet
capturing, email address validation, and operating system identification. It uses an unusual
method for operating system identification based on observing responses to four types of ICMP
messages and variations of them. WildPackets’ iNetTools is another commercial tool providing
many of the functions as other scanners.

Finally, probably the most widely used tool for port scanning is the open-source Nmap
shown in Figure 74-3. Nmap is perhaps the most capable port scanner, providing options for
many different types of scans. Possible scans include TCP Connect, TCP SYN, TCP FIN, Xmas
Tree, Null, TCP ACK, and UDP. Other interesting options in Nmap include: scanning for RPC
(remote procedure calls) services on a target machine; sending decoy scans with fake source
addresses; sending scans with different timing options to avoid detection; and identifying a
computer’s operating system via TCP stack fingerprinting.

Figure 74-3. Nmap graphical user interface.

Vulnerability Scanning
Using general network scanning, an attacker can discover a broad range of information

about a potential target, such as host addresses, network topology, open ports, and operating
systems. The next step in reconnaissance is to scan for specific vulnerabilities that might be
exploited for an attack. It is possible to manually scan for vulnerabilities, but would be obviously

8

time consuming to check many machines for hundreds or thousands of vulnerabilities. Many
automated vulnerability scanners are available and often used by system administrators to
evaluate the security of an internal network.

Types of Vulnerabilities Several types of vulnerabilities are usually sought by scanners:
• Default configuration weaknesses: Many operating systems and service applications ship

with default accounts and passwords. These are intended to help ease the installation
process, or simplify troubleshooting in case of lost passwords. Naturally, default
passwords should be changed but are sometimes overlooked or ignored. Attackers look
for the existence of default configurations because they offer an easy way to compromise
a system.

• Misconfiguration errors: Networking equipment requires expertise to configure properly.
Obviously, incorrect configuration settings can defeat any security offered by networking
equipment. An example is a misconfigured firewall that could be too permissive in
allowing incoming packets.

• Well-known system vulnerabilities: New vulnerabilities are being constantly discovered
in operating systems and applications. The most critical are often published by vendors
with a patch. However, it requires a great deal of time and effort for organizations or
individuals to keep up with security bulletins and patches. The time between the
publication of a security vulnerability and the installation of patches leaves a window of
opportunity for attackers to exploit that vulnerability.
Vulnerability Scanning Tools A vulnerability scanner is an automated program generally

consisting of: a vulnerability database to check; a user interface to allow control of the scanner;
scanning engine to send and receive packets; knowledge base to track the current scan; and a
recording and reporting tool (Skoudis, 2002). Many open-source and commercial vulnerability
scanners can be found easily.

Most vulnerabilities scanner operate in a similar way. They first discover live hosts
within a given address range using ping or similar utility. Then they run a basic set of scans to
discover open ports and active services running on the hosts. Based on this information, they
proceed to more customized probes for vulnerabilities. In the final step, they generate output in
the form of a report. Some vulnerabilities scanners include a function for network mapping as a
byproduct.

The Security Administrator’s Tool for Analyzing Networks (SATAN) was an early well-
known vulnerability scanner developed in 1995. While SATAN is still freely available, it has
two updated descendents, the open-source Security Auditor's Research Assistant (SARA) and the
commercial Security Administrator’s Integrated Network Tool (SAINT). SARA enhances
SATAN’s security engine and program architecture by providing an improved user interface and
up-to-date vulnerability tests. SARA can discover information about hosts by examining various
network services. It can also find potential security flaws, such as misconfigured network
services, well-known system vulnerabilities, or poorly chosen policies. It can generate a report of
these results or execute a rule-based program to investigate any potential security problems.

Nessus is a popular open-source vulnerability scanner. It works in a client-server
architecture, where the client and server may run on the same machine. The client consists of a
tool for user configuration and a tool for recording and reporting results. The server consists of a
vulnerability database, a knowledge base to keep track of the current scan, and a scanning
engine. Nmap is included as the built-in port scanning tool. The vulnerability database is
designed to be modular in the form of plug-ins, each plug-in to check for a specific vulnerability.

9

Nessus contains over 500 plug-ins, and a large user base continually contributes new ones.
Vulnerabilities are rated and classified into categories such as finger abuses, Windows-related
vulnerabilities, backdoors, CGI (common gateway interface) abuses, RPC vulnerabilities,
firewall misconfigurations, remote root access, FTP, and SMTP (mail server vulnerabilities).

Commercial vulnerability scanners include TigerTools’ TigerSuite Pro, McAfee’s
CyberCop ASaP, ISS’s Internet Scanner, eEye Digital Security’s Retina Network Security
Scanner, and Cisco Systems’ Secure Scanner.

ATTACK PHASE

The actual attack phase can take many different forms and serve different purposes, such
as stealing confidential data, tampering with the integrity of data, compromising the availability
of a resource, or obtaining unauthorized access to a system. As mentioned previously, these
specific attack types can be directed at either specific targets or the general network
infrastructure. Quite often, large-scale, indiscriminate attacks have the effect of widespread
disruption of computers and networks, even if that is not the real intent. They have widespread
effects because they are carried out through a network towards a large number of targets.

The major types of attack covered here include sniffing, session hijacking, password
attacks, exploits, social engineering attacks, Trojan horses, spyware and adware, viruses and
worms, spam, and denial-of-service (DoS) attacks. The list is not meant to be exhaustive, but
rather highlights of important attack types seen today.

These attack types are not mutually exclusive – in fact, many times they are combined in
so-called blended threats. For example, social engineering can be a component of many e-mail
worms. Some spyware is included as a Trojan horse in seemingly harmless software. Viruses can
spread via spam, and so forth.

Sniffing
Sniffing is a form of passive attack that enables the compromise of confidential

information. Sniffers, traditionally used by network administrators for traffic monitoring and
LAN troubleshooting, have become one of the most commonly used attack tools. An example
from the Ethereal sniffer is shown in Figure 74-4. On a LAN, hosts see all traffic broadcast on
the LAN medium but normally ignore the packets that are addressed to other hosts. A sniffer
program puts the network interface of a host into promiscuous mode to capture all packets seen
at the interface. Thus, the sniffer can eavesdrop on everything transmitted on the LAN including
user names, passwords, DNS queries, e-mail messages, and all types of personal data.

Many free and commercial sniffers are available, including tcpdump, windump, Snort,
Ethereal, Sniffit, and dsniff.

10

Figure 74-4. Example of Ethereal output.

Session Hijacking
Session hijacking is a combination of sniffing and address spoofing that enables the

compromise of a user’s remote login session, thus providing an attacker unauthorized access to a
machine with the privileges of the legitimate user. Address spoofing in IP is quite simple because
the sender of an IP packet writes in the IP source address in the packet header. Attackers can
send packets with any fake IP source address.

If a user is currently engaged in an interactive login session (e.g., through telnet, rlogin,
FTP), a session hijacking tool allows an attacker to steal the session. When most hijack victims
see their login session disappear, they usually just assume that the cause is network trouble and
try to login again, unaware of the hijacking attack.

Popular session hijacking tools include Juggernaut and Hunt. The hijacking attack begins
with the attacker sniffing packets of an interactive session between two hosts, carefully noting
the TCP sequence numbers of all packets. To hijack the session, the attacker injects packets with
a source address spoofing one of the hosts. The proper TCP sequence numbers must be used for
the attack to work, because the receiving host must be convinced to accept the faked packets
from the attacker.

Password Attacks
Password attacks enable unauthorized access to a machine or other resource with the

privileges of the user associated with the compromised password. Passwords continue to be very
frequently used for access control, despite their major weakness: if a password is guessed, an
attacker could gain complete access. The most well protected systems could be compromised by
a single weak password. Understandably, many attacks are often directed at guessing or
bypassing passwords.

The easiest passwords to guess are the default passwords installed by many operating
systems and service applications. Extensive lists of default accounts and passwords are not hard
to find by searching on the Web, and sometimes they are overlooked or ignored by system
administrators.

Another easy password attack is a dictionary attack that, as the name suggests, takes
advantage of the natural human instinct to choose passwords that are common words or names.
The chance of finding passwords that are common words may not be as likely as in the past

11

though, because modern systems are usually programmed with rules to prevent users from
choosing easily guessable passwords. More sophisticated hybrid password guessing tools
combine dictionary attacks with limited brute-force attacks. They begin with guesses of common
words but then methodically add characters to words to form new guesses.

The most powerful password attacks, called password cracking, can be performed if the
attacker can obtain the password file (Shimonski, 2002). Computer systems store a list of user
accounts and passwords in a password file, but the information is encrypted or hashed for
protection against attackers. If an attacker can obtain the password file, the attacker has the
advantage of time (translating into more CPU cycles) to crack the passwords by brute force (i.e.,
attempting all possible combinations of legal characters). A few examples of password cracking
tools include John the Ripper, Cain and Abel, Crack, Lincrack, L0phtcrack, Nutcracker,
PalmCrack, and RainbowCrack.

A variation and extension of password attacks involves guessing usernames as well as
passwords. Even if an attacker does not know a username associated with a given resource prior
to beginning a password attack, many systems include commonly named accounts such as
“Administrator” or “Guest”. Automated attacks in particular, such as self-propagating worms,
can incorporate password attacks that will guess both usernames and passwords when attempting
to compromise a resource.

Exploits
Exploits of vulnerabilities are a means of attack that enable unauthorized access to a

system. Vulnerabilities are continuously discovered in operating systems and application
software. A vulnerability is a description of a problem, which is not dangerous in and of itself.
The danger comes when an exploit is written that takes advantage of a vulnerability to
compromise the security of the operating system or application. Usually vulnerabilities are
announced at the same time with a patch for fixing the vulnerability. A vendor has knowledge of
the vulnerability but holds the information from the public at large until there is a fix for the
problem. However, the vulnerability is sometimes announced prior to a patch, in which case
there is an important race to devise and distribute a patch prior to the creation of an exploit
taking advantage of that vulnerability. In general, the time between the announcement of a
vulnerability and the appearance of a corresponding exploit is shrinking (Turner, 2004).

One of the most common types of exploit, used particularly often by worms, is a buffer
overflow attack. Attackers are drawn to this exploit because many applications and operating
systems do not perform proper bounds checking and are thus vulnerable to a buffer overflow.
Furthermore, if successful, a buffer overflow attack could lead to complete control of a target
machine.

A well-known instance is a stack-based buffer overflow, or “smashing the stack”
(AlephOne, 1996). During a function call, various pieces of data are pushed onto the program
stack: function-call arguments, return pointer, frame pointer, and local variables. Normally, at
the end of the function call, the pieces of data are popped off the stack, and the return pointer is
used to resume execution of the main program. A stack-based buffer overflow depends on
inputting more data than expected into the local variables. The excess data is written into the
allocated buffer space and then overwritten onto the frame pointer and return pointer. If the
excess data can be crafted carefully enough, the overwritten return pointer can be made to point
back into the stack somewhere in the data input by the attacker. Hence, when the main program
resumes execution, the attacker’s data (malicious code) will be run.

12

It might be observed that a buffer overflow attack requires careful coding and significant
technical knowledge about the target processor architecture. Hence, buffer overflow attacks are
not easy to craft from scratch, but pre-written exploits can be found and used even by novice
attackers.

Social Engineering
Social engineering is a time-tested, low-tech approach that continues to be effective for

both the reconnaissance and the actual attack phases. A social engineering attack refers to a
human interaction where social skills are used to trick the victim into a compromising action,
such as revealing personal information or opening an infected e-mail message. Social
engineering can be combined with many of the other attack types to compromise security for just
about any purpose. Although social engineering attacks are simple in concept, they can be
surprisingly effective if executed well.

In the past, the telephone was a favorite avenue for social engineering attacks. Attackers
would call an organization posing to be an employee, customer, supplier, or auditor, trying to
obtain proprietary information. Today, many social engineering attacks are carried out through e-
mail, due to the low risk and low cost of mass e-mailing. Also, e-mail works across different
computing platforms and various types of devices (including handheld mobile devices). E-mail
became the preferred medium after the success demonstrated by mass e-mailing viruses, such as
the 2000 Love Letter and 2001 Anna Kournikova viruses. E-mail viruses typically offer a
provocative reason to entice the recipient into opening (executing) an e-mail attachment, which
results in a virus infection. More recently, e-mails might pretend to be security bulletins,
bounced e-mail, notifications from an ISP or system administrator, or other official-looking
messages.

Recently, a type of social engineering attack called phishing (password harvesting
fishing) has escalated in frequency. Phishing attacks begin with e-mail seemingly from a
reputable credit card company or financial institution that requests account information, often
suggesting that there is a problem with an account or a transaction. These e-mails are carefully
crafted to appear official and often include corporate graphics. The e-mails typically include a
link directing the victim to a Website that appears to be genuine, but is actually a facsimile. The
purpose of the Website is to capture any account or personal information submitted by the
victim. An example of a phishing e-mail appearing to be sent from eBay is shown in Figure 74-5.

13

Figure 74-5. A fraudulent phishing e-mail pretending to be from eBay.

Trojan Horses
Trojan horses are malicious programs that appear to be benign (analogous to the Greek

wooden horse in the Trojan War). The purpose of the disguise is to entice a user into installing
and executing the program. If executed, Trojan horses are capable of doing anything that other
programs can do, running with the privileges of the associated user. Similar and related to social
engineering attacks, Trojan horses can be combined with many of the other attack types to
compromise security for just about any purpose. Today, Trojan horses are distributed by any
number of stealthy ways including virus and worm payloads, peer-to-peer file sharing, and
Website downloads. Victims are often unaware of their installation.

The most worrisome Trojan horse may be backdoor programs, sometimes called remote
access Trojans (RATs) because backdoors allow an attacker to remotely access a victim’s
machine. Backdoors circumvent the usual access control security (e.g., login with password).
Many backdoor Trojans are known and some are promoted for legitimate administrative uses,
including Sub7, Back Orifice 2000, and Virtual Network Computer (VNC).

Adware and Spyware
Adware is software to monitor and profile a user’s online behavior, typically for the

purposes of targeted marketing. Adware is often installed at the same time as other software
programs; when this occurs without the user’s knowledge, the adware (and the software with
which it is bundled) is an instance of a Trojan horse. Even when the user is alerted to the

14

presence of the adware (often buried in the ignored licensing agreement), adware can represent
an attack on the privacy of the user and the confidentiality of the user’s data when information
about the user is communicated back to a marketing organization. Adware is primarily an
annoyance, sometimes causing pop-up marketing windows during Web surfing.

A more serious and growing concern is another type of software that profiles and records
a user’s activities, called spyware. Similar to adware, spyware can sometimes be installed with a
user’s or system administrator’s knowledge. For example, commercial versions of spyware are
sold as means to monitor and regulate the online actions of children or an organization’s
employees. Often though, spyware can be installed stealthily on a machine as a Trojan horse or
as part of a virus or worm compromise. Spyware can record keystrokes (also known as keystroke
loggers), Websites visited, passwords, screenshots, and virtually anything done on a computer.
After capturing data, spyware can communicate the stolen data by various channels (e.g., e-mail,
FTP, upload to the Web, or Internet Relay Chat) to an attacker. Spyware, like adware, is an
attack on user privacy, but spyware is also more likely to compromise confidential data for
identity theft.

Viruses and Worms
Viruses and worms are software with the key characteristic of self-replication (Grimes,

2001; Harley, Slade, and Gattiker, 2001). While there is some debate and blurring of distinctions
between viruses and worms, common traditional definitions are the following:

• Viruses are program code that replicate by modifying (infecting) a normal program or file
with a copy of itself.

• Worms are stand-alone programs that replicate by spreading copies of themselves to
other systems through a network.
Traditional viruses are not complete programs themselves. When the host program or file

is executed, the virus code is executed and takes over control to copy itself to other files. Usually
human action is needed to execute the host program, so viruses are sometimes characterized as
requiring human action to replicate. Although viruses were far more common than worms around
ten years ago, worms have become predominant in the past few years. The increase in worms has
coincided with the growth of computer networks. Today virtually all computers are connected to
private networks or the Internet, which is an environment naturally friendly to worms. In
particular, the widespread popularity of e-mail has made it easier for worms to spread across
different computing platforms. E-mail continues to be the most popular vector for worm
propagation today, though typically e-mail worms require user intervention to propagate.

Viruses have evolved in their complexity over the years, often in response to
countermeasures put in place by anti-virus vendors. The first viruses often simply added their
code to either the beginning or the end of the host file. In order to evade simple detection, viruses
later began to intersperse their code throughout the host file. Another technique that viruses have
adopted to evade detection is to encrypt their code within each host file instance, thus making it
more difficult for a signature of the virus to be developed. When anti-virus programs began
keying on the decryption algorithm as the signature, viruses became polymorphic, changing their
decryption algorithm with each copy. Taking it one step further, some viruses have become
metamorphic, i.e., they change their logic (not just the decryption algorithm) with each infection
instance.

15

Worms that are standalone files have not had to evolve in the same way as file-infecting
viruses. Functionally, a worm program must carry out a few specific steps to spread to another
target after infection of a victim host.

First, an algorithm chooses candidates for the next targets. The simplest algorithm, which
is used by quite a few worms, is to choose an IP address (32-bit number) at random. This is not
efficient because the IP address space is not populated uniformly. More sophisticated target
selection algorithms choose addresses within the same networks as the victim because local
networks have shorter propagation delays to allow faster spreading. Other target selection
algorithms may choose targets discovered from a victim’s e-mail address book, mail server, DNS
server, or countless other ways.

Second, many (but not all) worms will perform scanning of selected targets, for the same
purpose as scanning done by human attackers. Scanning prompts responses from the potential
targets that indicate whether the worm’s programmed exploits can be successful. This process
identifies suitable targets among the selected candidates.

The third step is the actual exploit or attack to compromise a suitable target. A common
attack is to send e-mail to the target, usually carrying an infected attachment that has to be
executed. More sophisticated e-mail worms are activated when their message is just previewed
or read. Other worms might attack via file sharing, password guessing, or any number of
exploits. It is also common for worms to combine multiple exploits or propagation vectors
(blended threats) to increase the likelihood of success and rate of spreading.

The fourth step after successfully gaining access is to transfer a copy of the worm to the
target. Depending on the exploit, a copy of the worm might have been transferred during the
exploit (e.g., by e-mail). However, some exploits only create a means of access, such as a
backdoor or shell. The worm takes advantage of the access to transfer a copy of itself via any
number of protocols including FTP, TFTP, or HTTP.

An optional last step is execution of the worm’s payload, if there is one. The payload is
the part of the worm’s program that is directed at an infected victim and not related to its
propagation. The payload could be virtually anything, and not necessarily destructive. In recent
cases, payloads have included: opening backdoors allowing remote access; installing spyware;
downloading worm code updates from the Internet; or disabling anti-virus software.

Both viruses and worms are becoming easier to generate with the introduction of virus
and worm toolkits. For example, the VBSWG (Visual Basic Script Worm Generator) toolkit
simplified the process of creating e-mail worms for attackers – the Anna Kournikova worm in
2001 was produced using this toolkit. Other toolkits are easily found searching the Internet.
Toolkits enable advances in malicious code technology to become commodities, easily reused by
less experienced attackers for their own purposes.

Finally, there is a convergence occurring between viruses, worms, and other forms of
malicious code. For example, there are instances of malicious code that both infect files like a
virus and drop standalone copies of itself like a worm. Viruses and worms often possess
characteristics of a Trojan horse, especially when they use social engineering to trick a user into
aiding propagation. And viruses and worms can be used to enable the other forms of attack
discussed next, both spam and denial-of-service attacks.

Spam
Spam, the e-mail equivalent of unsolicited junk mail, has been a growing problem over

the past few years. E-mail addresses are harvested from the Internet or generated randomly. They

16

typically advertise a product, service, or investment scheme (which may well turn out to be
fraudulent). E-mail is an attractive advertising medium in economic terms. Spammers can send
enormous volumes of e-mail at much less cost than postal mail. The necessary equipment is
modest: a PC, software, and an Internet connection. Even if the response rate is very small, a
sizable profit can be made easily.

At the very least, spam wastes network resources (bandwidth, memory, server
processing) and necessitates spam filtering at ISPs and organizations. It also wastes users’ time
to read and delete. The seriousness of the problem has steadily grown as the volume of spam has
escalated.

A growing concern with spam is evidence of collaboration between spammers,
virus/worm writers, and organized crime. A substantial number of worms have been used as a
delivery vehicle for Trojan horses that set up “bots.” Bots listen for instructions from a remote
attacker or allow backdoor access. A number of bots under coordinated control is a bot net. Bot
nets are being used for distributed DoS attacks or spamming. Moreover, spam is increasingly
being used for phishing (as described earlier). Phishing attacks attempting identity theft with
increasing sophistication suggests the involvement of organized crime.

Denial of Service
Most people tend to think of denial of service (DoS) attacks as flooding, but at least four

types of DoS attacks can be identified:
• starvation of resources (e.g., CPU cycles, memory) on a particular machine
• causing failure of applications or operating systems to handle exceptional conditions, due

to programming flaws
• attacks on routing and DNS
• blocking of network access by consuming bandwidth with flooding traffic.

There are numerous examples of DoS attacks. A “land attack” is an example of
starvation. On vulnerable machines with Windows NT before service pack 4, the land attack
would cause the machine to loop, endlessly consuming CPU cycles. The “ping of death” is an
ICMP Echo Request message exceeding the maximum allowable length of 65,536 bytes. It
caused earlier operating systems to crash or freeze (that programming flaw has been remedied in
later operating systems).

The “Smurf” attack is an example of an indirect flooding attack, where the ICMP
protocol is abused to cause many response packets to be sent to a victim machine in response to a
broadcast packet. It is indirect because real attacker’s address is not seen in any packets. It is also
interesting as an example of amplification: a single attacker’s packet is multiplied into many
packets by the recipients of the broadcast.

The most harmful flooding attacks take advantage of amplification through a distributed
DoS (DDoS) network (Dittrich, 2004). A famous DDoS attack occurred in February 2000
against several Websites including Yahoo, eBay, e*Trade, and others. Examples of automated
DDoS tools include Trin00, TFN (tribe flood network), TFN2K, and Stacheldraht. In addition,
viruses and worms have been known to infect victims with DDoS agents.

DDoS attacks generally proceed in two phases. The first phase is stealthy preparation of
the DDoS network. The attacker attempts to compromise a large number of computers, often
home PCs with a broadband connection, by installing a DDoS agent (i.e., a Trojan horse). DDoS
tools such as Trin00 and TFN set up a two-level DDoS network. A small fraction of
compromised machines are designated as “masters”, waiting for commands from the attacker.

17

The remainder of compromised machines are “daemons” waiting for commands from masters.
The daemons carry out the actual flooding attack to a specified target.

DETECTION AVOIDANCE PHASE

During reconnaissance or an attack, an attacker would naturally prefer to avoid detection,
which could trigger defensive actions. After a successful attack gaining access or control of a
target, an attacker would like to hide evidence of the attack.

Evading Intrusion Detection Systems
Intrusion detection systems (IDSs) are designed to alert system administrators about any

signs of suspicious activities. They are analogous in function to burglar alarms, a way to react in
case intruders are able to penetrate preventive defenses (e.g., firewalls). Network-based IDSs
monitor the network traffic and might be a stand-alone device or integrated in firewalls or
routers. Host-based IDSs are processes that run on hosts and monitor system activities. IDSs are
now commonly used by organizations. Naturally, an intelligent attacker would want to avoid
detection by IDSs.

Without special precautions, an attacker could be easily detected by an IDS during
reconnaissance because scanning tools are noisy. A port scan might involve thousands of
packets, while a vulnerability scan could involve hundreds of thousands of packets. These scans
may have an obvious impact on normal traffic patterns in a network. Moreover, these scans are
exactly the signs that IDSs are designed to look for.

Most commercial IDSs attempt to match observed traffic against a database of attack
signatures (i.e., misuse detection). Hence, an attacker could try to evade a signature match by
changing the packets or traffic pattern of an attack. One approach to changing the appearance of
an attack is to take advantage of IP fragmentation. An IDS must be able to reassemble fragments
in order to analyze an attack. An IDS without the capability for fragment reassembly could be
evaded by simply fragmenting the attack packets. An IDS might also be overwhelmed by a flood
of fragments or unusual fragmentation.

IDS evasion is also possible at the application layer. For example, an IDS may have a
signature for attacks against known weak CGI scripts on a Web server. An attacker may try to
evade this signature by sending an HTTP request for a CGI script, but the HTTP request is
carefully modified to not match the signature but still run on the Web server.

Another strategy for evading detection by IDSs, or other monitoring products, is to
simply overload them with common, unimportant events to mask the actual attack. “Flying under
the radar” of an IDS is easy to do when thousands of meaningless port scans and ping sweeps are
filling the operators’ consoles and logs, while a more sophisticated attack is executed.

Covering Up
Covering up evidence after an attack is particularly important if an attacker wants to

maintain control of the victims. One of the obvious methods is to change the system logs on the
victim’s computers. Unix machines keep a running system log about all system activities, which
can be viewed by system administrators to detect signs of intrusions. Likewise, Windows
NT/2000/XP systems maintain event logs including logins, file changes, communications, and so
on.

18

An attacker needs to gain sufficient access privileges, such as root or administrator, to
change the log files. It is unwise to simply delete the logs because their absence would be noticed
by system administrators searching for unusual signs. Instead, a sophisticated attacker will try to
carefully edit system logs to selectively remove suspicious events, such as failed login attempts,
error conditions, and file accesses.

Rootkits
Rootkits are known to be one of the most dangerous means for attackers to cover their

tracks. Rootkits are obviously named for the root, the most prized target on Unix systems
because the root user has complete system access. If an attacker has gained root access, it is
possible to install a rootkit designed to hide signs of a compromise by selectively changing key
system components. The rootkit cannot be detected as an additional application or process; it is a
change to the operating system itself. For example, Unix systems include a program ifconfig that
can show the status of network interfaces, including interfaces in promiscuous mode (or a
sniffer). A toolkit could modify ifconfig to never reveal promiscuous interfaces, effectively
hiding the presence of a sniffer. Another program find is normally useful to locate files and
directories. A toolkit could modify find to hide an attacker’s files.

Kernel-level rootkits have evolved from traditional rootkits. In most operating systems,
the kernel is the fundamental core that controls processes, system memory, disk access, and other
essential system operations. As the term implies, kernel-level rootkits involve modification of the
kernel itself. The deception is embedded at the deepest level of the system, such that no
programs or utilities can be trusted any more.

Covert Channels
Although logs and operating systems can be modified to escape detection, the presence of

a system compromise might be given away by communications. For example, system
administrators might recognize the packets from an attacker trying to access a backdoor. Clearly,
an attacker would prefer to hide his communications through covert channels.

A common method used to hide communications is tunneling, which essentially means
one packet encapsulated in the payload of another packet. The outer packet is the vehicle for
delivery through a network; the receiver has to simply extract the inner packet. The outer packet
is usually IP for routing through the Internet. Also, ICMP messages and HTTP messages have
been used. Since the inner packet has no effect on network routing, any type of packet can be
carried by tunneling.

CONCLUSIONS

Computer systems are common targets for a wide range of electronic attacks. Instead of
an exhaustive catalog, this chapter has attempted a quick tour of the most pressing types of
attacks in preparation for later chapters with more details.

An understanding of attacks is necessary in order to design strong electronic defenses.
This chapter has not addressed electronic defenses, which will be covered by other chapters. We
have seen that attacks can be viewed as a sequence of phases proceeding from reconnaissance to
attack to covering up. An understanding of the methods and tools used in each attack phase can
be helpful in fortifying cyber defenses.

19

GLOSSARY

Adware: a type of software to monitor and profile a user’s online behavior.
Backdoor: a means for an attacker to remotely access a system.
Buffer overflow: an attack on programs without bounds checking that allows arbitrary attack

code to be executed remotely on a target system.
Denial of service: a type of attack on the proper operation of a system or service through

exhaustion of system resources, exhaustion of bandwidth, exploitation of programming
bugs, or attacks on routing and DNS.

Firewall: a security system intended to protect an organization’s internal network against threats
from an external network, using configurable filtering rules.

Footprinting: the initial process of discovering and identifying potential targets.
Intrusion detection system: a device to monitor network traffic or system activities to search for

signs of intrusions.
Pfishing: a social engineering attack luring e-mail victims to a fake Website for the purpose of

stealing personal data, such as account passwords.
Port scan: a probe to TCP or UDP ports to discover whether a service is listening.
Reconnaissance: the process of collecting information about potential targets in preparation for

an attack.
Rootkit: tools to change system components to evade detection of an intrusion.
Session hijacking: an attack to eavesdrop on an active session and take over control by

impersonating one of the hosts.
Sniffer: a program to passively intercept and copy network traffic typically on LANs.
Social engineering: an attack attempting to persuade or trick victims into a compromising action,

such as revealing
Spam: unsolicited junk e-mail, usually sent in bulk to many addresses.
Spyware: a type of software to attack privacy by stealing personal data.
Trojan horse: a program appearing to be useful but actually containing malicious functions.
Virus: program code that executes during the execution of an infected host program to copy itself

to other programs.
Vulnerability: a weakness or flaw that may be exploited by an attack to compromise a system or

service.
Worm: a self-replicating program that automatically attempts to copy itself to other systems

across a network.

REFERENCES

Aleph One, “Smashing the stack for fun and profit,” available at
http://www.insecure.org/stf/smashstack.txt (date of access: Oct. 1, 2004).

CERT, “2004 E-crime watch survey shows significant increase in electronic crimes,”
available at http://www.cert.org/about/ecrime.html (date of access: Oct. 1, 2004).

Chirillo, J. (2002). Hack Attacks Revealed, 2nd ed. Indianapolis, IA: Wiley Publishing.
Dittrich, D., “Distributed denial of service (DDoS) attacks/tools,” available at

http://staff.washington.edu/dittrich/misc/ddos/ (date of access: Oct. 1, 2004).

20

Fyodor, “Remote OS detection via TCP/IP stack fingerprinting,” available at
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (date of access: Oct. 1, 2004).

Grimes, R. (2001). Malicious Mobile Code: Virus Protection for Windows. Sebastopol,
CA: O’Reilly.

Harley, D., Slade, D., and Gattiker, U. (2001). Viruses Revealed. New York: McGraw-
Hill.

McClure, S., Scambray, J., and Kutz, G. (2001). Hacking Exposed. 3rd ed. New York:
McGraw-Hill.

Skoudis, E. (2002). Counter Hack: A Step-by-Step Guide to Computer Attacks and
Effective Defenses. Upper Saddle River, NJ: Prentice Hall PTR.

Shimonski, R., “Introduction to password cracking,” available at http://www-
106.ibm.com/developerworks/library/s-crack/ (date of access: Oct. 1, 2004).

Sophos, “Suspected Sasser worm author caught; could trigger more arrests,: available at
http://www.sophos.com/virusinfo/articles/sasserarrest.html (date of access: Oct. 1, 2004).

Symantec Corp., “W32.Beagle.B@mm,” available at
http://securityresponse.symantec.com/avcenter/venc/data/w32.beagle.b@mm.html (date of
access: Oct. 1, 2004).

Turner, D., et al. (2004). Symantec Internet Security Threat Report: Trends for January 1,
2004 – June 30, 2004. available at http://www.symantec.com (date of access: Oct. 1, 2004).

FURTHER READING

A number of Websites contain information and software related to the attack tools mentioned in
this chapter:

• Packetstorm, available at http://www.packetstormsecurity.org
• Operation:Security, available at http://www.operationsecurity.com
• Insecure.org, available at http://www.insecure.org/tools.html

Well-known Websites with literature and advisories about vulnerabilities include:
• CERT, available at http://www.cert.org
• SANS, available at http://www.sans.org

Anti-virus corporate Websites are a good source of information about malicious code:
• McAfee, available at http://www.mcafeee.com
• Sophos, available at http://www.sophos.com
• Symantec, available at http://www.symanec.com
• TrendMicro, available at http://www.trendmicro.com

