
A Web-Based Network Worm Simulator
Nasir Jamil and Thomas M. Chen

Department of Electrical Engineering
Southern Methodist University

Dallas, Texas 75275
Email: nasir@mail.smu.edu, tchen@engr.smu.edu

Abstract— We present a worm simulator which can be run
remotely through the web, based on the parameters supplied by
the client. The core simulator program executes on the server and
simulates the flow of the worm through a user-specified topology.
The results of the simulation are then graphically displayed to the
client. A variety of worm vectors can be simulated and various
countermeasures such as rate throttling and quarantining can
also be employed. The simulator uses a design that is efficient in
terms of speed and memory requirements, while providing a lot
of features for realistic simulations.

I. INTRODUCTION

It is common to study networking problems by simulation
due to the complexity and large scale of communications
networks. Worms are a primary example of a networking
problem that is well suited to simulation. Worms replicate
themselves automatically from host to host, taking advantage
of network connectivity. It is difficult to treat the dynamics
of worm propagation by means of analysis because of the
complex interactions between worm traffic, infection level,
network congestion, and network topology. It is possible to
treat worm epidemics at a simplified level of abstraction
but simulations are necessary to verify analytic results and
investigate dynamics at more realistic levels.

Worm simulators are typically designed and developed like
other applications. A simulation program is written, compiled,
and then downloaded by users to execute on their machines.
Examples of worm simulators are [1]–[3].

While this approach obviously works, it has a number of
well known drawbacks [4]. The simulator will be platform
dependent, and each copy of the simulator and simulation
results will be tied to a physical machine. User interfaces for
different simulators may be inconsistent and perhaps difficult
to understand. Each user will be responsible for maintenance
and downloading of the latest version.

The World Wide Web offers the same appeal for simulations
as for any application [5]. The simulator itself is hosted on
a Web server but accessible from any Web browser. The
main advantages are platform and location independence.
Users can access the simulator and results from any computer
through the Internet. The Web browser interface is familiar,
consistent, and user friendly. In addition, users are relieved
of the responsibilities for downloading and maintaining their
own copies of a simulator.

Web pages are commonly viewed as static and non-
interactive, but this notion is outdated. The Web browser al-
lows flexible client-side interaction through technologies such

as Java or Javascript. PHP and Ajax (asynchronous Javascript
and XML) are also technologies enabling dynamic interfaces
to server-side applications. One of the advantages to moving
simulation to a Web-based architecture is the potential to take
advantage of emerging Internet standards and technologies.

This paper describes and demonstrates a novel Web-based
architecture for a worm simulator. NaSim is the first Web-
based worm simulator to the authors’ knowledge [6]. The
simulator runs on the Web server, and receives input and
outputs results through the Web browser. While it is possible
to use the Web to run client-side simulation, that is the not the
approach followed here because it would be limited to Java
applets and not much conceptually different from downloading
a simulator executable. One of the innovations is the separation
of simulator and interface (which is the standard browser). In
section II we present the high-level design of the simulator.
Section III provides the implementation details of the server-
side simulator core. Section IV presents some of simulation
results generated with the simulator.

II. HIGH-LEVEL DESIGN

The simulator follows a client-server design for enabling the
user to order a simulation and then observe the results on his
web page. Fig. 1 illustrates the simulator’s high-level design.
The front-end implements the client interface. After entry
and validation of the simulator’s parameters, the simulation
is run by passing these parameters to the back-end through
an HTTP POST request. The request is processed by the web
server using the simulator’s CGI script, which is responsible
for managing the simulation process on the server side. The
incoming parameters are passed on to the core simulator.
This is followed by creating a software representation of
the network topology. The nodes in this topology are then
“populated” with hosts. The links in the topology are assigned
bandwidth based on the properties of the end-nodes. Worm
countermeasures are associated with the nodes based on the
respective parameters. At this point, the core simulator starts
simulating the traversal of the worm through the network
topology. When this process is complete, the results of the
simulation are stored on the server and the CGI script sends
back a response to the HTTP request. The front-end then reads
the data from the server and displays it in graphical format.



CGI Script 

Load Parameters 

Generate Topology 

Generate Population 

Generate Bandwidths 

Deploy Countermeasures 

Run Simulation 

Load Applet 

Enter Parameters 

Validate Parameters 

Run

Send HTTP POST 

Receive Response 

Graphical Output 

HTTP POST

Reply 

Front-EndBack-End

Fig. 1. High-Level Design

A. Web-Based Front-End

The front-end is an interactive GUI application provided by
a Java applet and is shown in Fig. 2. It has provisions for
data entry, data validation, context-based help, execution, and
graphical display of the simulator’s output.

The user-provided parameters have been divided into four
categories; basic parameters, outbound rate control, inbound
rate control, and quarantining. The basic parameters help
specify the framework through which the worm would be
simulated; the number of Autonomous Systems (AS) in the
topology, algorithm for populating these nodes, link-capacities,
and queue length. They also specify the worm vector, whether
it is a uniformly spreading worm or a local-preferential one,
and if the later then the percentage of probes targeting hosts
of the same node.

The parameters relating to worm countermeasures can be
activated on a per-group basis. The parameters for outbound
rate control specify the percentage of households (AS) that
would have this capability, the selection algorithm for such
households, and the severity of throttling the worm traffic.
The parameters for inbound rate throttling specify similar
deployment criteria and throttle factor. In addition, they also
specify the trigger-type and threshold for activating this coun-
termeasure. Quarantining is the most severe countermeasure
where all incoming and outgoing worm traffic is blocked. This
measure will have its own deployment and triggering criteria.

Every parameter value is validated upon entry. If the valida-
tion fails, the field is highlighted in red color and positioning
the mouse over the field would display a pop-up message
explaining why the validation failed. When the Run button
is clicked, a quick check is made to ensure that all fields have
been successfully validated. If there are no validation errors,
then the parameters are encoded into an HTTP POST message
and sent to the applet’s web-server.

B. CGI Back-End

The CGI script at the back-end is a python program which
receives the simulation request containing the user-specified
parameters. It imports the python core simulator and passes

Fig. 2. Front-end of the NaSim simulator

these parameters to it along with a unique request-ID. It then
invokes the core simulation function. When the simulation is
complete the data is stored on the server using a file-name
based on the unique request-ID and a response is sent back to
the front-end. Upon receipt, the front-end reads the data file
on the server and displays it in graphical form.

C. Topology Generation

By design, the simulator does not have its own topology
generator. The aim is to take advantage of existing work in this
area and use data from one of the available topology generators
[7]. The simulator would then use this data to construct the
topology in its own object space and simulate the flow or
worms through it. Alternatively, one of the available data sets
for Internet topology may also be used.

D. Core Simulator

After the topology is determined, the CGI script invokes
the core simulation program which is a topological worm
simulator. It simulates the behavior of the specified worm as
it traverses the specified topology, subject to a combination of
countermeasures deployed and invoked per user specification.

After topology generation, the core simulator populates the
AS nodes with hosts and specifies the bandwidths for all the
links. It then deploys the countermeasures among a percentage
of the total nodes, selecting the nodes based on a user-specified
criterion (random, ascending, or descending in terms of the
node population). The deployed counter measures would then
be triggered at a certain point in the simulation process when
the triggering threshold is crossed. Each measure has its own
parameters for deployment and triggering. After this step the
core simulator starts the simulation.



E. Output Of Results

The core simulator stores the statistics of the simulation on
a per-iteration basis and upon completion this data is stored
on the web-server using the unique request-ID as a file-name.
The front-end will then read this file and display the data in
graphical form.

F. Job Scheduling

A feature of Web-based simulation is the possibility that
multiple users may request simulations at the same time. Each
user would be tagged differently based on the CGI process
ID, date-stamp, and the client’s IP address, and the simulation
results would be stored in a file named by that tag. The
simulator can also keep track of the number of requests in
process and put a cap on this number, so as not to over-burden
the server.

Since many users would be running simulations on the same
server, a library of previously run simulations can be main-
tained. Thus, the client can browse through the simulations
already run for different sets of parameters, and have the
simulation results displayed based on the stored data file. The
storage requirements for such files would not be much, and it
would save time for the client as well as save the server from
undue processing burden.

III. IMPLEMENTATION DETAILS OF THE CORE
SIMULATOR

A. Representation of Network Topology

The Internet is a collection of many locally-administered
domains called Autonomous Systems (AS). An autonomous
system is connected to the global Internet through one or more
access routers. Each AS can be treated as a node in a graph
whose properties have been studied in the recent years [8]. The
simulator starts with the logical representation of the Internet
topology in terms of nodes and links:

1) Nodes: The simulator models the Autonomous system
as a class object, containing the following details:
• Degree of the Node
• Links to other nodes
• Description of the hosts contained in the node
• Queue for infectious packets
• Deployed countermeasures
• Activated countermeasures
There are several topology generators for the Internet. The

simulator is designed to accept the topological data generated
by these programs, and represent it in the form of the AS
objects called households.

2) Links: Each link between nodes is a link object whose
reference is stored by the houses on both ends. A link object
also defines its usage, capacity and cost. The link capacities
may be imported from a data file or automatically assigned
based on certain pre-defined criteria such as degree and
population of the nodes at either end of the link. The cost of
the link is derived by comparing its link capacity with the high-
water mark of all link capacities and factoring in the usage of

that link. This cost is then used by the routing algorithm for
calculating the optimal path for the worm flow.

B. Representation of Hosts Within the Topology

Each node within the topology represents a household where
the hosts live. The populations of the respective households
may be imported through a data file or determined through a
pre-defined algorithm, correlating the population of the node
with its degree and link capacities.

The proper representation of the host data structures was a
challenge. Host objects are the key structures for the entire
simulation process and are going to occur in very large
numbers. It is, therefore, imperative that they are stored in
a way that leads to efficient processing and lowest possible
memory requirements. There were two basic approaches for
representing the hosts:

1) Per Household Storage: This approach would require
each household to store all its host objects. Although appeal-
ing, it would make it difficult to choose a random host from the
global population. This would make host targeting a complex
and therefore less efficient operation.

2) Global Storage: According to this approach, all the hosts
are stored in one linear array. That way, choosing a random
array index would effectively choose a random host. Of course,
identification of the target host is followed by determining the
household it lives in, so that a realistic network traversal can
happen from the source to the target household. This can easily
be achieved by storing the household ID in each host object.

One more issue needed resolution before the global ap-
proach could be adopted. While each host knew its own house-
hold, how does a household keep track of all its hosts? This
would be a requirement for local-preferential worms which
target hosts within the household with higher probability. Of
course, each household could store the IDs of all its hosts,
but in view of the enormous number of hosts, that would be
a real waste of memory. The solution was to have sequential
IDs for all the hosts in a household. That way, storing the
starting ID and the number of hosts is sufficient information
for determining the hosts in a household, and if needed, for
choosing a random target from among them.

C. Simulator Core

The core of the simulator is responsible for an iteration cycle
of the simulator. Its goal is to cycle through every infected host
calculating how to spread the infection. Infectious attempts
that cannot make it all the way to the target are queued at
the node beyond which it could not travel. Therefore, the core
simulator also enables queued infectious vectors from previous
iterations to reach their respective destinations. Here are the
highlights of the core:

1) Infectious hosts: The simulator cycles through the hosts
and when it comes across one that has been marked as
infective, it gives it a chance to choose its target host. For
a uniformly spreading worm, this would mean generating a
random index for the host array. For a local preferential worm,
if would use a weighted probability to decide whether to



target a host inside its household or globally. In either case, if
the target is within the same household as the source, then
there are no transmission issues to be considered and the
infectious attempt is considered successful, provided that the
target has not already been marked as infected or removed. If
the target is outside the household then an optimal path would
be calculated and a transmission attempt would be made.

2) Mechanism of Spread: When a worm vector needs to
be transmitted across nodes (households), a least-cost optimal
path is determined using Dijkstra’s algorithm. The program
then follows the links of this path and in each case verifies
whether the usage is less than the link capacity. If so, then
the usage and cost are incremented and it moves on to the
next link. If it comes across a link whose entire capacity has
been used up by other worm transmissions during the current
iteration, then the target host ID is queued against the latest
node along the path. The attempt would then be made during
the next iteration cycle.

3) Queued Attempts: A node queues the ID of the target
host when the link to the next node has no available capacity.
Each node has a queue whose size may depend on the
characteristics of that node. If the queue is full, the additional
queueing attempts on that node are dropped.

At the start of each iteration cycle, the program first cycles
through the queues of all the nodes and gives the queued
attempts the first shot at reaching their destination. It is
assumed that the link usage of an infection vector is for one
iteration only, since transmission from source to destination
can be completed in the same iteration if there is available
bandwidth on the links. Consequently, the usage of all links is
reset to zero at the beginning of each iteration cycle. This
makes it possible that attempts which were queued in the
previous iteration would now have available bandwidth to
move forward.

D. Countermeasures

The countermeasures are deployed among a subset of the
households according to the user’s specification. At the end
of each simulation cycle the status of countermeasures is
examined for each household and they are activated if the
household has been assigned that capability and the worm
statistics exceed the triggering threshold. The main counter-
measures of interest are router-based rate throttling (inbound
and/or outbound) and router-based quarantining [9]–[14].

During the worm spread, an outgoing probe is dropped if
the household has activated outgoing rate-throttling and the
weighted probability function favors throttling for this one.
Similarly, an incoming probe is dropped if the target household
has activated inbound rate throttling and it is determined that
this attempt needs to be blocked. It is worth noting that even
if the attempt is blocked, the simulator still takes into account
the bandwidth used by the probe to reach its target. The
houses that have activated quarantining block all outgoing and
incoming probes. None of these countermeasures impact the
intra-household propagation of the worm.

E. Data Collection and Storage

One of the issues with large-scale simulations is that they
can take a while to complete. With this possibility in mind, the
core simulator is intended to work as a background process
with no user interaction. As each iteration cycle is performed,
data is stored on a per-iteration basis. All this data is written
to a data file upon completion of the simulation. This data
can then be used to resurrect the simulation process and give
the user a sense that things are happening in realtime. In
other words, the user interface has been disconnected from the
actual simulation. This helps the simulation to run unfettered
without wasting precious execution time in updating the user
interface, while at the same time saving the user from having
to watch the simulation at a very slow speed. This client/server
approach made it possible to deploy the simulator on the web.
It has also made it possible to display the simulator output
from previously run simulations just by reading the data file.

IV. SIMULATIONS

The simulator was used to run 4 sets of simulations for
2200 hosts populated among 8 households, with a user-
defined topology. A uniform-spreading worm was simulated
in this scenario. The first simulation does not employ any
countermeasures and the worm is only constrained by the
available bandwidth. The second simulation deploys outbound
rate-throttling in 50 percent of the households, with a throttle
factor of 70 percent. The third simulation employs the same
outbound throttling as before, and adds inbound throttling
to 40 percent of the households, with a throttle factor of
60 percent. The fourth simulation uses the same throttling
strategy as the previous two, but adds quarantining capability
to 40 percent of the households. However, the quarantining
capability is only activated when 60 percent of the hosts are
infected globally. The graph clearly shows a significant slow-
down in the rate of infection at around the 60 percent infective
level.

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

Iterations

N
o.

 o
f I

nf
ec

tiv
es

No Countermeasures
Outbound Throttling
Bidirectional Throttling
Throttling + Quarantining

Fig. 3. Simulations showing the effects of countermeasures



The intent of these simulations was to display the capabil-
ities of the simulator, so a small topology was used. There is
further work underway, during which larger topologies would
be examined and the results compared with those of known
worm outbreaks.

V. CONCLUSIONS

The worm simulator presented in this paper simulates the
flow of a variety of worms through a user-specified topology,
taking into account a combination of countermeasures such
as router-based rate-throttling and quarantining. One of the
unique features of this simulator is the separation of the core
simulator from the interface, thus making it possible to deploy
the simulator through a web-page which interacts with the
back-end server. Some simulations have been presented here
which demonstrate the effectiveness of the countermeasures.
Future work is anticipated in which this simulator would be
used for much larger topologies and the results compared to
data from previous worm outbreaks. For a certain type of
worm, the comparison between the empirically observed data
and the simulated data would serve as a baseline thus making
it possible to relate the simulated effects of countermeasures
to their real-world deployment. Towards that end, it will help
evaluate the effectiveness of these measures with respect to
different worm vectors. The simulator has already been put
on the web and is functional.

REFERENCES

[1] M. Liljenstam, “SSF.App.Worm: A network worm modeling package for
SSFNet.” http://www.crhc.uiuc.edu/˜mili/research/ssf/worm/index.html,
Sept. 28, 2006.

[2] M. Liljenstam, Y. Yuan, B. J. Premore, and D. Nicol, “A mixed abstrac-
tion level simulation model of large-scale Internet worm infestations,” in
10th IEEE/ACM Symp. on Modeling, Analysis, and Simulation of Comp.
Telecom. Sys. (MASCOTS 2002), (Fort Worth, TX), pp. 109–116, Oct.
11–16, 2002.

[3] B. Ediger, “Network Worm Simulation (NWS) System.”
http://www.users.qwest.net/˜eballen1/nws/, Sept. 26, 2003.

[4] T. K. Leong, B. Ali, V. Prakash, and N. Nordin, “A prototype of Web-
based simulation environment: using CGI and Javascript,” in Proc. IEEE
TENCON 2000, (Kuala Lumpur, Malaysia), pp. 357–360, Sept. 24–27,
2000.

[5] J. Kuljis and R. J. Paul, “A review of web based simulation: whither
we wander?,” in WSC ’00: Proceedings of the 32nd conference on
Winter simulation, (San Diego, CA, USA), pp. 1872–1881, Society for
Computer Simulation International, 2000.

[6] N. Jamil and T. M. Chen, “NaSim (Nasir’s Worm Simulator).”
http://engr.smu.edu/˜nasir/simulator.html, Sept. 28, 2006.

[7] J. Winick and S. Jamin, “Inet-3.0: Internet Topology Generator,” Tech.
Rep. UM-CSE-TR-456-02, University of Michigan, 2002.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-
tionships of the Internet topology,” ACM SIGCOMM 99, Computer
Communication Review, vol. 29, pp. 251–262, Oct. 1999.

[9] N. Jamil and T. M. Chen, “Effectiveness of Rate Control in Slowing
Down Worm Epidemics,” in IEEE Globecom 2006, (San Francisco,
California, USA), Nov. 27 – Dec. 1, 2006.

[10] M. Williamson, “Throttling viruses: restricting propagation to defeat
malicious mobile code,” in 18th Annual Comp. Sec. Appl. Conf., (Las
Vegas, NV), Dec. 9–13, 2002.

[11] P. Porras, L. Briesemeister, K. Skinner, K. Levitt, J. Rowe, and Y.-
C. A. Ting, “A hybrid quarantine defense,” in ACM Workshop on Rapid
Malcode (WORM 2004), (Wash. DC), pp. 73–82, 2004.

[12] G. Ganger, G. Economou, and S. Bielski, “Self-securing network inter-
faces,” Tech. Rep. CMU-CS-02-144, Carnegie Mellon U., Aug. 2002.

[13] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine:
requirements for containing self-propagating code,” in IEEE Infocom
2003, (San Francisco, CA), pp. 1901–1910, 2003.

[14] T. M. Chen and N. Jamil, “Effectiveness of Quarantine in Worm
Epidemics,” in IEEE International Conference on Communications (ICC
2006), (Istanbul, Turkey), June 11 – 15, 2006.


