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Abstract— A new method for real-time traffic model classifica-
tion is proposed and evaluated. The method classifies the current
measured traffic to a ”best-fit” model selected from a library
of candidate models using statistical estimation techniques. A
two-model system has been prototyped and evaluated through
simulation experiments. The experimental system consists of a
short-range dependent model and long-range dependent model,
and uses the estimated Hurst parameter to select between the two
models to choose the model requiring an equivalent bandwidth
(EB) that is cloest to the actual required EB. Results demonstrate
that the two-model system can classify observed traffic to the
correct model with fair accuracy, and can automatically detect
a change in traffic characteristics after a delay. The design
parameters effecting the classification accuracy and delay to
detect traffic changes are discussed.

I. INTRODUCTION

Traditionally, traffic modeling is performed off-line on
historical traffic data, and the results may not be relevant
to current network conditions. It would be more useful to
analyze traffic in real time if possible, but the problem of
real-time traffic modeling is complicated by the fact that
traffic characteristics may vary over time and depend on the
particular traffic type. Traffic studies suggest that a single
model cannot adequately represent all types of traffic. To
address this problem, we have developed a new method for
traffic modeling that classifies observed traffic to the ”best-
fit” traffic model from a library of models using statistical
estimation techniques. The model classification is updated
continuously in real time as more traffic is observed. With
accurate real-time traffic modeling, it will be possible to better
adapt resource allocation to current network conditions.

In this paper, we focus on the problem of model classifi-
cation using a two-model library to choose a model with the
equivalent bandwidth (EB) that is closest to the actual required
EB. In Section II, we describe the general model classification
approach. Section III presents theoretical and experimental
results for the simple two-model scheme. In Section IV, we
study the system for equivalent bandwidth calculation. Section
V are the conclusions and research issues for future work.

II. MODEL-LIBRARY TRAFFIC CLASSIFICATION

Many traffic models have been developed over the years for
various types of traffic. It can be seen from these studies that a
single model cannot adequately represent all types of Internet
traffic. Moreover, traffic characteristics can vary randomly

over time. Hence, we have investigated an adaptive method
where the best-fit traffic model is dynamically selected based
on current traffic measurements. An overview of the general
approach is shown in Fig. 1. A model library consists of a
number of candidate traffic models. It is designed intentionally
to be modular, instead of an integrated expert system, so that
individual models can be added or changed without effecting
the entire system. As the traffic rate is observed (represented
by a time series), statistics for the traffic are continually
updated and used to dynamically select one of the candidate
models as the best-fit model. The selected model represents the
current traffic behavior. Ultimately, the best-fit traffic model
that is output from this system can be used to adapt resource
allocation algorithms in real time.

In the general case with N candidate models, it is difficult
to identify a sufficient set of statistics for the model selection.
Also, it is very complicated to fully evaluate the accuracy of a
general system. Therefore, we have chosen to focus our initial
study on a simple two-model system where a single statistic is
sufficient to differentiate between the two candidate models.
The feasibility of the two-model system is demonstrated and
evaluated through simulation experiments. Our objective is to
generalize the results from the two-model system to better
design the general N-model system.

III. RESULTS FOR TWO-MODEL CLASSIFICATION

A. Experimental Two-Model System

In our initial experiments, two candidate models were
implemented: a Poisson process to represent short-range de-
pendent (SRD) traffic and a fractional Gaussian noise (fGn)
process for long-range dependent (LRD) traffic. The Poisson
process has been widely used for traditional SRD data sources.
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Fig. 1. General model classification system
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Recently, Ethernet data traffic was found to exhibit self-similar
properties [1]. Evidence for self-similarity was also reported
in wide area traffic [2], variable-bit rate (VBR) video traffic
[3] [4], World Wide Web traffic [5], and SS7 traffic [6].

An LRD or self-similar process X(t) has an autocovariance
function that decays hyperbolically,

γX(k) ∼ |k|−2(1−H) (1)

when |k| → ∞ and 0.5 < H ≤ 1. In contrast, SRD
processes have exponentially decaying autocovariance. The
Hurst parameter H is a property of the process indicating
its degree of self-similarity (higher H indicates more self-
similarity). Because of the central importance of the Hurst
parameter H in characterizing LRD processes, it is natural to
use the parameter as the statistic to choose between the SRD or
LRD candidate models. We investigated the use of a threshold
value for Ĥ , denoted by T , to choose between the LRD and
SRD candidate models. If Ĥ < T , the Poisson model was
selected; otherwise, the fGn model was chosen. However, the
randomness of the estimation of H may result in selection of
the wrong model, so the probability of misclassification is an
issue which is discussed in section III-C.

B. Wavelet-based Hurst Parameter Estimation

The first issue examined was accurate estimation of the
Hurst parameter. Considering the different known estimation
methods, the Abry-Veitch (AV) wavelet-based estimator was
chosen because it has good statistical characteristics [7] [8].
The AV wavelet-based estimator performs a time average of
wavelet coefficients |wx(j, k)|2:

Γx =
1
nj

∑
k=1

nj |wx(j, k)|2 (2)

where nj is the number of wavelet coefficients at a given
scale level j. An estimator Ĥ for the Hurst parameter can
be obtained by making a linear regression of log2 (Γx) in the
scaling range [j1, j2] which should have a slope of 2H − 1:

log2 (Γx) = (2H − 1)j + ê (3)

In this study, the whole interval of the scales worked well as
the scaling range.

For the wavelet-based estimator, the number of data samples
is required to be a power of 2. Previous studies have indicated
that the variance of the estimator decreases quickly with the
sample size [10]. Thus, for accuracy, a larger sample size will
always be better. On the other hand, larger sample sizes will
increase the time needed for model selection. The choice of
sample size involves a trade-off between estimation accuracy
and time for model selection. In the following experiments, we
used a sample size of 1024 which appeared to be a reasonable
compromise. In practice, the choice of sample size may be
constrained by a desired level of accuracy or time for model
selection.
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Fig. 2. Empirical PDF of Ĥ measured for H = 0.5, 0.6 data

C. Accuracy of Model Classification Using Thresholds

The next issue examined was the optimal choice of threshold
and resulting accuracy of model classification. Theoretical
studies have found that Ĥ is unbiased and approximately
normally distributed, that is, Ĥ ∼ N(H,σ2

Ĥ
) [8]. Moreover,

the variance does not depend on H and is given by

σ2
Ĥ

=
2j1−1

n ln2 2
1 − 2−J

1 − 2−(J+1)(J2 + 4) + 2−2J
(4)

where J = j2 − j1 + 1, [j1, j2] is the scaling range, and n is
the sample size. Here, j1 = 1, j2 = 10, n = 1024, then the
standard deviation σĤ from (4) turned out to be 0.046.

Fig. 2 shows examples of empirical PDFs (probability
density functions) of Ĥ measured for 100,000 simulation runs
of Poisson and fGn (H = 0.6) data. The empirical PDF is
normally distributed around H . The only notable difference
from the theoretical PDF is a smaller measured standard
deviation σ̂Ĥ = 0.025 (compared to 0.046).

Given Ĥ ∼ N(H,σ2), we can calculate the probability of
misclassification of the system for a specific threshold, and
find the optimal threshold to minimize the misclassification
probability. It was observed in our simulation experiments that
the optimal threshold could be obtained in the midpoint of
two model’s Hurst values, given that the traffic was one of
the two models with equal likelihood. In the following we
will derive the probability of misclassification for a specific
threshold value T , as well as the optimal threshold To if model
is selected with a priori probability p.

Suppose we have two candidate models with Hurst param-
eters H1 and H2, respectively, where H1 < H2. Model 1 is
selected if Ĥ < T , and model 2 is selected if Ĥ > T . If the
actual traffic is model 1, then the conditional probability of
misclassification will be

Pm1 =Pr(Ĥ > T | model1)

=
∫ ∞

T

1√
2πσ

e−
(y−H1)2

2σ2 dy
(5)

If the actual traffic is model 2, then the conditional probability
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of misclassification will be

Pm2 =Pr(Ĥ < T | model2)

=
∫ T

−∞

1√
2πσ

e−
(y−H2)2

2σ2 dy
(6)

If the actual traffic is model 1 with probability p, then the total
probability of misclassification will be

Pm = Pm1 · p + Pm2 · (1 − p) (7)

which is proportional to the shaded area in Fig. 2. The optimal
threshold minimizing the total probability of misclassification
can be found by taking the derivative of (7) with respect to T
and setting it equal to 0:

0 =
∂

∂T
Pm

=
1 − p√

2πσ
e−

(T−H2)2

2σ2 − p√
2πσ

e−
(T−H1)2

2σ2

(8)

This simplifies to

lnp − (To − H1)2

2σ2
= ln(1 − p) − (To − H2)2

2σ2
(9)

The solution is:

To =
H2

2 − H2
1 + 2σ2 ln p

1−p

2(H2 − H1)
(10)

When the traffic is either model 1 or 2 with equal likelihood
( p = 0.5), To is simply the midpoint between H1 and H2:

To =
H1 + H2

2
(11)

Fig. 3 shows the misclassification probability Pm when
model 1 is Poisson (H1 = 0.5) and model 2 is fGn with
H2 = 0.6 with equal likelihood. It was observed that theoreti-
cal and experimental results for misclassification probabilities
agreed very closely when the experimental standard deviation
(σĤ = 0.025) was used. Fig. 3 also shows that the total
misclassification probability Pm is minimized by a threshold
of To = 0.55 as expected from (11).
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Fig. 3. Misclassification Probability Pm for H = 0.5, 0.6 traffic

Moreover, given that p is known a priori, the probability
of misclassification Pm for a specific threshold T can be

calculated from (7). Likewise, for a given Pm, we can find out
how close the two models’ Hurst values can be and choose
one threshold to meet the given probability.

D. Detection of Traffic Changes

In the previous experiments, the simulated traffic was en-
tirely SRD or LRD, and the problem was to select the correct
traffic model. The estimation of the Hurst parameter was
relatively straightforward. In more realistic circumstances, the
traffic characteristics may be dynamic and changing over time.
The Hurst parameter estimation must be updated continuously
to detect the changes. In the following experiments, the
simulated traffic consisted of alternating SRD (H = 0.5) and
LRD (H = 0.8) intervals, and the problem is to correctly
classify the intervals to model 1 (Poisson) or model 2 (fGn
with H = 0.8). With an optimal threshold of T = 0.65, the
misclassification probability was very small, Pm ∼ 10−9. The
performance metric of interest is the time required for the
system to detect a change in the traffic.

As before, the Hurst parameter estimation is computed over
windows (intervals) of 1024 data samples. As more traffic is
observed, the window is advanced by a step size s, and the
Hurst parameter is re-estimated, as shown in Fig. 4. Thus,
consecutive calculations of the Hurst parameter estimator share
an interval of 1024 − s data samples in common. Whenever
the Hurst parameter is updated, the model selection is also
recalculated (using the threshold). In the case that Hurst
parameter is a function of time, we assume that in the sliding
window period of time, the Hurst parameter is a constant. An
example of the procedure is shown in Fig. 5 with a sliding
window size s = 64. The traffic consists of 4096 Poisson data
samples followed by 4096 fGn data samples and another 4096
Poisson data samples. It took 320 data samples for Ĥ to fall
below T and detect the change from fGn to Poisson traffic,
and 640 data samples to detect the change from Poisson to
fGn traffic.

Let Ds fp denote the delay (in data samples) to detect a
change from fGn to Poisson traffic, and Ds pf the delay to
detect a change from Poisson to fGn. The delay is measured
as the difference between the time of the actual traffic change
to the corresponding change in the output of the model
classification system. There must be some delay before enough
data samples cause the estimator Ĥ to cross the threshold and
change the model selection.

Two factors effect the delays Ds fp and Ds pf : the step

t 1 t 2

s

w

w

... ... ...
Estimate window

Estimate window

step size

Fig. 4. Sliding windows used for estimation
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size s and the window size w that is the sample size for each
calculation of the Hurst parameter. These factors should be
chosen to shorten the delay to detect traffic changes, but there
is a trade-off between shorter delay and accurate estimation.
Fig. 6 shows that Ds fp and Ds pf generally increase with
larger step size s, as might be expected. Larger steps mean
that the Hurst parameter is updated less frequently, so it takes
longer to detect a traffic change. However, s cannot be updated
too frequently due to computation cost. In Fig. 7, the step size
is fixed to s = 64, and Ds fp and Ds pf are shown to increase
with w. It appears that w should be minimized, but small w
will result in larger variance in the estimator Ĥ and more
likelihood of model misclassification.

IV. EQUIVALENT BANDWIDTH CALCULATION

The concept of equivalent bandwidth (EB) has been devel-
oped recently to provide a measure of resource usage and it is
a useful approach for resource allocation [11]. The equivalent
bandwidth of a source is the minimum required bandwidth
such that QoS requirement can be met [12]. For a stationary
source, the equivalent bandwidth is defined as [11]:

α(s, t) =
1
st

log E[esX[0,t]] 0 < s, t < ∞, (12)

where X[0, t] is the amount of traffic that arrives from a source
in [0, t] interval and X[0, t] has stationary increments.

Equivalent bandwidth formulae have been developed for
several models, eg, fractional Brownian Motion (fBM) model
and Poisson model. The equivalent bandwidth (EB) formula
for fBM model is [13]:

EBfBM = m+(HH(1−H)1−H
√−2lnε)

1
H v

1
2H B1− 1

H m
1

2H ,
(13)

where m stands for the mean rate of the incoming traffic, H
is the Hurst parameter, ε is the required cell loss ratio (CLR),
B is the buffer size of the server, and v is the variance of the
traffic.

The EB formula of a Poisson process with mean rate λ is:
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Fig. 5. Detection of traffic changes with w = 1024, s = 64: (a) True Hurst
value of simulated traffic; (b) estimated Hurst value Ĥ; (c) Hurst value of
classified traffic.
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EBpoisson =
λ(eθ − 1)

θ
, (14)

Here θ ≈ − lnε
B , so we can see the EB of a Poisson process

only has relation to do with mean rate, CLR and the buffer
size, but has no relation to do with Hurst parameter and the
variance of the traffic.

We learned from (13) that there is a relationship between
Hurst parameter and equivalent bandwidth, as shown in Figure
8. In our classification system, the ultimate purpose of classi-
fication is to estimate the true EB for the incoming traffic. To
do that, we should choose the traffic model that comes closest
to the true EB, eg, model i is chosen if |EBi−EBtrue| has the
minimum value. However, the true EB is unknown and instead
we must choose a model based on the estimated H parameter.
Then the question becomes how to identify the model with the
EB closest to the true EB using only the estimated H . (13)
seems too complicated to find the reverse function, but when
we study the relation between log10(EB) and H , we find
that it is nearly linear and can be fit by a regression model.
Figure 9 shows the relation between log10(EB) and H , and
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the fitted linear model. In this figure we used the parameters:
mean rate = 2 (Mbps), buffer size = 1000, cell loss ratio =
0.00001, Hurst value ∈ [0.5, 1], and variance = 10; then the
linear model is

H = 0.37 · log 10(EB) + 0.3181. (15)

This gives a way to do the threshold transformation. For
example, in the classification system we have a fBM model
with H = H1 and a Poisson model with H = H2. The
EB of the coming traffic could be either of EBfBM or
EBPoisson. The EB threshold is set to be the mid-point
value of EBfBM and EBPoisson since we choose model
A if |EBA − EBtrue| < |EBB − EBtrue|. We can find
from (15) that the corresponding Hurst parameter for the EB
threshold as the Hurst threshold to do the classification. In
one experiment, we set H1 = 0.8 and H2 = 0.5, using the
parameters that stated above, we got EBfBM = 20.5300,
EBPoisson = 0.0232, and the Hthreshold = 0.6925, nearly
the mid-point of H = 0.8 and H = 0.5.

V. CONCLUSIONS

This paper has presented a new model classification method
and demonstrated its feasibility with the simple two-model

case. The results for the two-model system using a simple
threshold show that it can be fairly accurate when the traf-
fic characteristics are static. When traffic characteristics are
changing, the model classification problem is complicated
by the need to compute the Hurst parameter over long data
intervals (for accuracy) and the opposite need for short data
intervals (to detect traffic changes quickly). With sliding
windows, experimental results indicate that small step sizes
and short windows can help to reduce the delay to detect
traffic changes, but at a cost of more computation and higher
likelihood of model misclassification.

We studied how to choose the model to meet the equivalent
bandwidth requirement while only use the estimated Hurst
parameter. But the probobility of misclassification based on
the EB requirement is still needed to be studied.

Future work will concentrate on how to apply this model to
call admission control algorithm and how to develop it into N
model system (In this case, instead of using Hurst parameter
alone, a set of parameters need to be chosen for classifica-
tion, e.g., autocorrelation function and probability distribution
function of the traffic). Meanwhile, more models like Markov-
modulated Poisson process (MMPP) model, autoregressive
moving average (ARMA) model, fractional autoregressive
integrated moving average (p, d, q) (FARIMA (p, d, q)) model,
etc, will be built into the library.

REFERENCES

[1] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the self-
similar nature of ethernet traffic(extended version),” IEEE/ACM Trans.
Networking, no. 2, pp. 1–25, 1994.

[2] V. Paxon and S. Floyd, “Wide-area traffic: the failure of poisson
modeling,” IEEE/ACM Trans. Networking, vol. 3, pp. 226–244, June
1995.

[3] M. Garrett and W. Willinger, “Analysis, modeling and generation of
self-similar vbr video traffic,” in Proc. of ACM SIGCOMM’94, 1994.

[4] J. Beran, R. Sherman, M.S. Taqqu, and W. Willinger, “Long-range
dependence in variable-bit rate video traffic,” IEEE Trans. Commun.,
vol. 43, 1995.

[5] M. E. Crovella and A. Bestavros, “Self similarity in www traffic:
evidence and possible causes,” IEEE/ACM Trans. Networking, vol. 5,
pp. 835–846, Dec. 1997.

[6] D.E. Duffy, A.A. McIntosh, M. Rosenstein, and W. Willinger, “Statistical
analysis of ccsn/ss7 traffic data from working subnetworks,” IEEE J.
Select. Areas Commun., vol. 12, no. 3, 1994.

[7] P. Abry and D. Veitch, “Wavelet analysis of long-range-dependent
traffic,” IEEE Trans. Inform. Theory, vol. 44, no. 1, Jan. 1998.

[8] D. Veitch and P. Abry, “A wavelet-based joint estimator of the parameters
of long-range dependence,” IEEE Trans. Inform. Theory, vol. 45, no. 3,
pp. 878–896, Apr. 1999.

[9] J.C. Goswami and A.K. Chan, Fundamentals of wavelets: theory,
algorithms, and applications. John Wiley & Sons, Inc, 1999.

[10] M. Roughan, D. Veitch and P. Abry, “Real-time estimation of the
parameters of long-range dependence,” IEEE/ACM Trans. Networking,
vol. 8, pp. 467–478, Aug. 2000.

[11] F. Kelly, ”Notes on Effective Bandwidths,” Stochastic networks: theory
and applications, pp. 141–168, Oxford Press, 1996.

[12] N.L.S. Fonseca, G.S. Mayor and C.A.V. Neto, “On the equivalent
bandwidth of self-similar sources,” ACM Trans. Modeling and Computer
Simulation, vol. 10, Issue 2, April 2000.

[13] I. Norros, “On the Use of Fractional Brownian Motion in the Theory
of Connectionless Networks,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 6, pp. 953–962, Aug. 1995.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1861


	footer1: 


