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Abstract— Measurements of high-speed network traffic have 
shown that traffic data exhibits a high degree of self-similarity. 
Traditional traffic models such as AR and ARMA are not able to 
capture this long-range-dependence making them ineffective for 
the traffic prediction task. In this paper, we apply the fractional 
ARIMA (F-ARIMA) model to predict one-step-ahead traffic 
value at different time scales. F-ARIMA has the ability to capture 
both the short- and long-range dependent characteristics of the 
underlying data. We present a simplified adaptive prediction 
scheme to reduce the F-ARIMA computational complexity. The 
performance of the proposed F-ARIMA prediction model is 
tested on four different types of traffic data: MPEG and JPEG 
video, Ethernet and Internet.  We also apply the F-ARIMA 
prediction model to a dynamic bandwidth allocation scheme.  
The results show that the performance of F-ARIMA outperforms 
the AR models. They also show that the prediction performance 
depends on the traffic nature and the time scale.  
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I.  INTRODUCTION 
High-speed network traffic measurements have shown that 

the traffic has a self-similar characteristic [1], [2]. The main 
feature of the self-similarity is that its autocorrelation function 
decays hyperbolically instead of exponentially as traditional 
traffic models, e.g. autoregressive (AR) and autoregressive 
moving average (ARMA). Thus, the traditional models are not 
able to capture the self-similar characteristic [1]. On the other 
hand, fractional autoregressive integrated moving average (F-
ARIMA) is a self-similar model, and it has the ability to 
capture both the short-range dependent (SRD) and long-range 
dependent (LRD) characteristics. As such, this model would 
be useful as traffic predictor. In [6], F-ARIMA has been used 
in modeling Ethernet and video traffic. In [7], F-ARIMA 
parameters are estimated and used to predict the Ethernet 
traffic. A simplified scheme to estimate these parameters and 
build the model is also presented in [6], [7].  
 

In ATM, traffic prediction is considered as the core of the 
preventive congestion control schemes such as the connection 
admission control (CAC) problems, and available bit rate 
(ABR) traffic rate control. CAC schemes are applied to decide 
whether to accept or reject new connection requests [10]. 
When the network accepts a new request, it allocates enough 
network resource to satisfy the required quality of service 
(QoS) without violating the QoS guaranteed to the existing 
connections. Bandwidth allocation approaches can be divided 
into two categories: static and dynamic [12], [13]. In static 
approaches, the allocated bandwidth remains constant during 
the connection lifetime. In dynamic allocation, the allocated 
bandwidth can be changed to increase the network utilization. 
Static allocation is effective for the constant bit rate (CBR) 
traffic service. Dynamic allocation is suitable for the variable 
bit rate (VBR) traffic service whose statistical characteristics 
may vary over time [12], [13]. It is difficult to allocate an 
optimal static amount of bandwidth for VBR traffic at the time 
when an admission decision is to be made. 
 

F-ARIMA prediction model has been used to build a CAC 
scheme [8], and a dynamic bandwidth allocation scheme [9]. 
In this dynamic allocation scheme, the predicted traffic values 
are used directly regardless of the buffer length, and that may 
result in buffer overflow.  
 

In this paper, we propose a simplified adaptive F-ARIMA 
based prediction scheme that avoids the computational 
complexity. The adaptation scheme gives the model the ability 
to keep track of the traffic changes and growth. We apply the 
F-ARIMA model to predict one-step-ahead traffic value at 
different time-scales. The performance of the proposed 
schemes is tested on four different types of traffic data, MPEG 
and JPEG video, Ethernet and Internet. We show also the 
application of the F-ARIMA model to the dynamic bandwidth 
allocation scheme proposed in [12]. This scheme limits the 
buffer length to a certain length, so it avoids the buffer 
overflow and cell loss. It can increase the network utilization 
and avoid congestion. 



II. F-ARIMA PREDICTION MODEL 

A. F-ARIMA Parameters Estimation 
The fractional autoregressive integrated moving average 

model of order (p,d,q), denoted as F-ARIMA (p,d,q), is 
defined as: 
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where:  B is a lag operator, x(n-1) = Bx(n).  

φ (B) and θ (B) are two polynomial functions of degree p 
and q respectively, defined as: 
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All the zeros of φ(B), and θ(B) are outside the unit circle. 
d is the differential factor, and it is calculated from the 

Hurst parameter H, where d = H - 0.5  
∇d is the fractional difference operator defined as: 
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where Γ denotes the gamma function.  
 

The F-ARIMA parameters are estimated from the 
historical traffic data. These parameters can be divided into 
two categories. The first category contains the d factor that 
presents the long-range dependent (LRD) property. The 
second category contains the ARMA parameters, p, q, φ(B), 
θ(B), and the variance of e(n), that present the short-range 
dependent (SRD) property.  
 

To compute the d factor, the Hurst parameter H is 
estimated using the Abry-Veitch (AV) wavelet method [3]. 
This estimation method provides an unbiased estimate of the 
H parameter with high robustness and low computational cost. 
For most traffic data, the estimated H parameter falls in the 
range of H > 0.5, so d will be in the range 0 < d < 0.5 [1], [2], 
[3]. 
 

To estimate the ARMA parameters, we can convert the F-
ARIMA process to an ARMA process through the following 
transformation [6], [7]: )()( nxnw d∇= . 
 

The following steps are used to estimate the ARMA 
parameters [6], [7]:  

1- Get a zero-mean traffic data (x(n) - µ), where µ = 
E[x(n)] with E denoting the expected value. 

2- Apply the fractional difference operator: 
( )µ−∇= )()( nxnw d , w(n) is ARMA (p,q) 

3- Determine p, and q by using the cross-validation 
scheme [14]. The values of p and q are small values, 
in the range of 0, 1, 2, and 3.  

4- Estimate the parameters, φ(B), θ(B) and the variance 
of e(n) [15].  Check to ensure that all the zeros of 
φ(B), and θ(B) are outside the unit circle. 

 
In the cross-validation scheme [14], the training data is 

divided into modeling and validation sets. The modeling set is 
used to estimate the parameters of the ARMA models for 
different combinations of p and q. These parameters are used 
to predict the traffic in the validation set, and their 
performance is measured. That p and q combination that gives 
the best performance is selected. This scheme gives the model 
a better generalization ability. 
 

B. F-ARIMA Prediction Scheme 
For 0 < d < 0.5, x(n) is a stationary and invertible process, 

so the one-step ahead predicted value, denoted as )(ˆ nxFARIMA , 
can be estimated by [4], [7]: 
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In [7], they apply (2) to propose an adaptive prediction 

method to provide an upper probability limit. In this paper, we 
propose a simplified adaptive F-ARIMA prediction scheme. 
This schemes depends on the decomposition of the F-
ARIMA(p,d,q) as F-ARIMA(0,d,0) [5]. The basic idea is to 
predict the F-ARIMA(0,d,0), and convert the predicted 
process to F-ARIMA(p,d,q). In this scheme, the order 
parameters, p, and q, remain fixed. We develop the following 
steps to predict the one-step-ahead traffic value and update the 
parameters easily: 

1- Compute { } )()()()( 1 nxBBny φθ −= , y(n) is F-
ARIMA(0,d,0). 

2- Compute the best linear predictor of y(n), by applying 
the following equation [4]: 
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Theoretically, large values of k yield better results. In 
our implementation, k is adjusted according to the 
available data and to avoid any divergence. 

3- Compute the predicted value 
{ } )(ˆ)()()(ˆ 1 nyBBnx −= φθ . 

4- Once the actual traffic value becomes available, 
update the historical data. 

5- Estimate the parameters of φ(B), and θ(B). 



6- Check for the convergence condition and check for 
all the zeros of φ(B), and θ(B) to be outside the unit 
circle. If all the conditions are satisfied, then go to 
step 1 and predict the next value. 
If the parameters do not satisfy the conditions, then 
we estimate the H parameter using AV wavelet 
algorithm. Then, using the same p, and q, we estimate 
the parameters of φ(B), and θ(B). 

 
To extend the horizon, the k-step-ahead predicted traffic 

value can be computed recursively [11]. For example, to 
obtain the two-step-ahead traffic value, the one-step-ahead 
predicted value is computed first. Then it is used with the 
other lagged traffic values to compute the two-step-ahead 
predicted value. This procedure is repeated to generate any 
further k predicted values. To update the F-ARIMA 
parameters, once the actual traffic values become available, 
the adaptive part of the proposed prediction scheme is applied 
(steps 4 to 6). 
 

By increasing the value of k, we find that the recursive k-
step-ahead traffic prediction may cause prediction error 
accumulation, especially when k becomes larger (k > 5). To 
avoid this error, we apply the F-ARIMA model to predict one-
step-ahead traffic value at different time scales separately.  

 

III. ATM DYNAMIC BANDWIDTH ALLOCATION 
For the VBR traffic, static bandwidth allocation may result 

in low utilization. Dynamic bandwidth allocation can achieve 
better utilization, provided that the VBR can be predicted 
accurately. To evaluate the F-ARIMA prediction algorithm for 
this application, we model an ATM link as a first-in-first-out 
(FIFO) queue with finite length Q. The occupancy of the 
queue at any time n is given as q(n). The lagged traffic values 
are used to predict the one-step-ahead traffic value, denoted as 

)(ˆ nx . In [12 ], the actual allocated bandwidth is given by: 
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where γ is the desired occupation ratio with 0 < γ < 1. 
 
 The procedure for the dynamic bandwidth allocation is 
[12]: 

1- Measure the current queue length q(n-1). 
2- Predict the traffic bandwidth )(ˆ nx , compute the 

actual allocated bandwidth A(n). 
3- When x(n) becomes available, update the F-ARIMA 

parameters. 
4- Increment t, and go to step 1. 

 
This algorithm is designed to keep the buffer occupancy 

around the value of γ⋅Q, so it avoids the buffer overflow and 
cell loss. It increases the network utilization and avoids 
congestion. 

IV. EXPERIMENTAL RESULTS 
The performance of the proposed F-ARIMA prediction 

model is tested on four different types of traffic data, MPEG 
and JPEG video, Ethernet and Internet. The used video traffic 
is the MPEG and JPEG version of the “Star Wars” movie that 
is available at [16]. The Telcordia (formerly Bellcore) 
Ethernet and Internet traffic are available at [17]. All the 
traffic data are processed to present number of packets (or 
cells) per unit time. Then they are aggregated at different time 
scales, e.g. 1, 5, 10 seconds. The traffic data is divided into 
two sets: training and testing. The training set is used to apply 
the cross-validation scheme and to estimate the models’ 
parameters. Then these parameters are tested on the testing set 
ensuring blind test. 
 

The utilized performance measure is the prediction signal to 
noise ratio (SNR) given as: 
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where E(.) is the expected value, x(n) is the actual traffic 
value, and )(ˆ nx  is the predicted traffic value. As the 
prediction accuracy increases, the prediction SNR becomes 
higher. 
 

We compare the performance of the F-ARIMA model to 
the AR model. The order of AR (denoted as p) is estimated 
using the cross-validation scheme as mentioned in section 
II.A. The parameters of AR (denoted as φ(B)) are estimated as 
in [15].  
 

All the models use the lagged traffic values to predict one-
step-ahead traffic value at different time scales. The 
performance results in terms of SNR are presented in Table I. 
The first column shows the time scale (TS) in sec. For each 
traffic data, we present the SNR of applying AR and F-
ARIMA model. The best results are highlighted in bold. 
 

Figs. 1 to 4 show samples of the results in graphical form. 
The actual traffic values of the MPEG, and JPEG video, 
Ethernet and Internet data at 1 sec are shown as solid line. The 
corresponding predicted values are superimposed as dotted 
line. 
 

The results show that the performance of the F-ARIMA 
model outperforms the AR model. From Table I, we notice 
that the time-scale and the nature of the traffic play a 
significant role in the traffic prediction performance.  
 

For small time-scale, the difference between F-ARIMA 
and AR model is small. For larger time-scales, the difference 
increases by about 1 to 2 dB depending on the nature of the 
traffic data.  

 
 



TABLE I.  PREDICTION SNR OF DIFFERENT TRAFFIC DATA 

MPEG JPEG Ethernet Internet TS 
(sec) AR F-ARIMA AR F-ARIMA AR F-ARIMA AR F-ARIMA 

1 13.2852 13.4872 23.076 23.6735 12.1476 12.4199 12.4135 12.6893 
5 13.1059 13.9029 18.9845 19.9448 13.8275 14.6888 13.8813 14.8311 

10 13.9234 15.0434 17.7972 19.732 13.4159 14.605 14.0734 15.0198 
 

 
Figure 1.   Actual and predicted MPEG video traffic 

 

 
Figure 2.   Actual and predicted JPEG video traffic 

 
For the JPEG traffic data, as the time-scale increases, the 

SNR decreases. The used video traffic, “Star Wars”, is an 
action movie, and its scenes change very quickly. Thus, it is 
not easy to predict the amount of traffic over long time-scale. 
For the Internet traffic data, as the time-scale increases, the 
prediction performance increases. This result can be explained 
in term of the user’s habit of using the Internet. For example, 
during the day (longer time-scale) it is easy to predict when 
and how long the user will access the Internet, and how much 
traffic is expected over this period from user’s traffic history. 
From Table I, it is difficult to arrive at an explicit relation 
between the time scale and the prediction performance for the 
MPEG video, and Ethernet traffic. 
  

The performance of the dynamic bandwidth allocation is 
tested on two different video traffic data, MPEG and JPEG. 
This traffic data is aggregated at time-scale 1 sec. In this 
experiment, γ is assigned to 0.5 implying that the buffer 
should be half-occupied all times. 

 

Figs. 5 and 6 show the ratio of buffer occupation when we 
apply the F-ARIMA prediction model. From these Figs., we 
notice that the ratio of buffer occupation is around 0.5.   

 
Figure 3.   Actual and predicted Ethernet traffic 

 

 
Figure 4.   Actual and predicted Internet traffic 

 

To compare the performances of the AR, and F-ARIMA 
models, Table II shows the mean and variance of the buffer 
length distribution when we apply these different models. From 
this table, we notice that the F-ARIMA model gives lower 
variance compared to the AR model. F-ARIMA has the ability 
to capture both the SRD and LRD traffic characteristics, while 
AR is able to capture the SRD characteristics only.  

V. CONCLUSIONS 
High-speed network traffic has self-similarity. The 

traditional traffic prediction models are not able to capture this 
characteristic. F-ARIMA is a self-similar model and it is able 
to capture both the SRD and LRD characteristics. The 
proposed F-ARIMA prediction scheme is adaptive, so the 
model is able to keep track with any traffic changes. We apply 
it to predict one-step-ahead traffic value at different time-
scale. It is tested on four different traffic data, MPEG, and 
JPEG video, Ethernet and Internet. We compare the 
performance of F-ARIMA model to the AR model in terms of 
prediction SNR. The results show that the F-ARIMA model 
outperforms the other model. We also notice that the time 
scale and the nature of the traffic play important role in the 
prediction performance. 



 

 
Figure 5.  Ratio of buffer occupation using MPEG video traffic data 

 
Figure 6.  Ratio of buffer occupation using JPEG video traffic data 

TABLE II.  PARAMETERS OF BUFFER LENGTH DISTRIBUTION 

MPEG JPEG Data 
AR F-ARIMA AR F-ARIMA 

Mean 0.51 0.5 0.507 0.5 
variance 0.07 0.038 0.019 0.0096 

 

The proposed F-ARIMA model is also applied to a 
dynamic bandwidth allocation scheme. The used scheme forces 
the queue length to hover around any desired value, so it avoids 
buffer overflow and cell loss. It also can increase the network 
utilization and avoid congestion. We compare the performance 
of F-ARIMA to the AR models in terms of the variance around 
the desired queue length value. The F-ARIMA prediction 
model results in smaller variance. 
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